Reconfigurability in MDO Problem Synthesis, Part 1

AIAA - 2004-4307

and

Natalia M. Alexandrov

NASA Langley Research

Center

Hampton, Virginia

Robert Michael Lewis

College of
William & Mary
Williamsburg, Virginia

http://mdob.larc.nasa.gov

10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference

Outline

Companion papers: Part1 – approach; Part 2 – details

- Focus: MDO-NLP
- Idea of reconfigurable MD synthesis (REMS)
- Basic tools of REMS
- REMS process
- Relation to other efforts
- Concluding remarks

MDO-NLP

 MDO ≡ part of the total design process that can be stated as a nonlinear programming problem (NLP) (our focus to-date)

MDO-NLP formulation

- Influences computational tractability of optimization problem
- In realistic problems, formulation may not be clear a priori

Observing MDO application teams

- Before optimization is considered, significant time and effort spent on developing multidisciplinary analysis (MDA)
- Little or no room for experimentation with alternatives

Experience with MDO test problems.

- Always in the form of a monolithic formulation
- Disciplinary components hidden in implementation
- "Dis-integrating" problems to experiment with alternative formulations is time-consuming and error prone

MDO-NLP

- Extensive work devoted to MDO-NLP decomposition
- "Decomposition" assumes an ur-problem
- Our perspective
 - There is no ur-problem: MDO starts out as a collection of autonomous disciplinary analyses with diverse data formats
 - The task is to assemble an MDO formulation from autonomous disciplinary information
 - Make it as easy as possible on all concerned

Clear need

- Flexible MDO problem abstraction to assist researchers and practitioners in formulating and re-formulating MDO problems with maximum possible ease
- I.e., need a language for reasoning about MDO

Idea of reconfigurable MD synthesis (REMS)

- Capacity for reconfigurability among MFO formulations:
 - sharing basic computational components
 - being related via closer of analysis constraints and variable eliminations
- Two-discipline model problem:

- Coupled MDA ~ the physical requirement that a solution satisfy both analyses
- Given $x = (s, l_1, l_2)$, we have

$$a_1 = A_1(s,l_1,a_2)$$

$$a_2 = A_2(s, l_2, a_1)$$

Simultaneous Analysis and Design (SAND)

Relax all couplings; All variables independent

Write MDA as
$$a_1 = A_1(s, l_1, t_2)$$
 $a_2 = A_2(s, l_2, t_1)$
 $t_1 = a_1$
 $t_2 = a_2$

minimize
$$s,l_1,l_2,a_1,a_2,t_1,t_2$$
 $subject to$ $subject to$ $c_1(s,l_1,a_1) \geq 0$ $c_2(s,l_2,a_2) \geq 0$ analysis constraints $a_1 = A_1(s,l_1,t_2)$ $a_2 = A_2(s,l_2,t_1)$ consistency constraints $t_1 = a_1$ $t_2 = a_2$

Distributed Analysis Optimization (DAO)

Close disciplinary consistency constraints; relax the coupling in MDA; maintain disciplinary analyses

A DAO formulation is

$$\begin{array}{ll} \underset{s,l_1,l_2,t_1,t_2}{\text{minimize}} & f(s,t_1,t_2) \\ & \text{subject to} & c_1(s,l_1,t_1) \geq 0 \\ & c_2(s,l_2,t_2) \geq 0 \end{array} \} \text{disciplinary constraints} \\ & c_3(s,l_2,t_2) \geq 0 \end{array}$$
 consistency constraints
$$\left\{ \begin{array}{ll} t_1 = a_1(s,l_1,t_2) \\ t_2 = a_2(s,l_2,t_1), \end{array} \right.$$

where the disciplinary responses $a_1(s, l_1, t_2)$ and $a_2(s, l_2, t_1)$ are found by closing the disciplinary analysis constraints

$$a_1 = A_1(s, l_1, t_2)$$

 $a_2 = A_2(s, l_2, t_1)$

(AKA Individual Discipline Feasible, Cramer et al.)

Fully Integrated Optimization (FIO)

Close multidisciplinary consistency constraints

The corresponding FIO formulation is

$$egin{array}{ll} & \min _{s,l_1,l_2} & f(s,t_1(s,l_1,l_2),t_2(s,l_1,l_2)) \ & ext{subject to} & c_1(s,l_1,t_1(s,l_1,l_2)) \geq 0 \ & c_2(s,l_2,t_2(s,l_1,l_2)) \geq 0 \end{array}$$

where we compute $t_1(s, l_1, l_2)$ and $t_2(s, l_1, l_2)$ by solving the MDA

$$a_1 = A_1(s, l_1, t_2)$$
 $t_1 = a_1$
 $a_2 = A_2(s, l_2, t_1)$ $t_2 = a_2$.

Formulations and reconfigurability, cont.

- Eliminating (a₁,a₂) via disciplinary analyses + eliminating (I₁,I₂) via disciplinary design constraints generally leads to bilevel optimization problems
- Minimal computational components can be re-used
- Standard results on reduced derivatives tell us that the sensitivities in DAO and FIO are related to those in SAND via variable reduction
- Therefore, computational components of one formulation can be reconfigured to yield those of another in the context specific algorithms
- For a specific choice of algorithm (e.g., reduced-basis SQP) and specific formulations (e.g., DAO, FIO, SAND), the relationship among the sensitivities means that it is possible to implement an optimization algorithm for SAND so that with a single modification one obtains an algorithm for DAO or FIO (Lewis 1997)

Role of abstraction

- Reasoning about MDO (NLP) formulation involves problem specification or notation
- Algebraic specification is well suited for NLP problem formulation
 - Example: AMPL (A Modeling Language for Mathematical Programming, Fourer et al.)
 - In fact, we would like to come up with AMPL for MDO
- From a user's perspective
 - Algebraic specification for MDO is difficult for more than two disciplines: need to distinguish among variables shared by several pairs of disciplines; may be duplicates
 - Would like to have problem specification in a subset of a natural language (English) and handle the assembly as automatically as possible

Components of REMS

- Problem specification
 - Lists of disciplinary inputs and outputs of the form
 Identifier Description Attributes
- Abstraction directed graphs representing data flow
 - Function nodes
 - Disciplinary or subsystem operations
 - Objectives and constraints
 - May contain hierarchies or simple operations
 - Data nodes
 - Inputs and outputs of functions
 - A single output may serve as input to several functions
- Basic approach compiler-like assembly and manipulation of information from nodes

REMS process illustrated with a simple example

 Two "disciplines", stress S and weight W, govern the behavior of a bar under a load F

Step 1: Autonomous disciplinary description

• Disciplinary practitioners describe inputs and outputs of $\,\mathcal{W}$ and $\,\mathcal{S}\,$, autonomously, without reference to multidisciplinary context:

ID	Description	O or I	Dimension	
A	cross-sectional area		1	
F	longitudinal stress		1	
S	stress	0	1	

REMS process, step 1, cont.

• Similarly, for the other "discipline"

А	cross-sectional area	T	1	
ρ	density	I	1	
L	length	T	1	
W	weight	0	1	

REMS process, step 1, cont.

- Autonomous disciplinary specification of inputs and outputs

 a simple task than accounting for I/O in multidisciplinary
 context at the outset
- Problem representation remain dynamic throughout formulation process
 - Need not describe all data
 - Need not have an exhaustive list of attributes

REMS process, step 2: compiling disciplinary IR

- REMS examines the disciplinary I/O lists and automatically assembles intermediate representations of subsystems (disciplines) as function nodes with in and outgoing data nodes
- Incidence matrices are constructed (all nodes vs. all nodes, with 1 or 0 entries in the matrix)
- At this stage REMS can compile disciplinary sensitivity information

REMS process, step 3: reconciling MD coupling

- Link disciplinary IR into a multidisciplinary IR
- Detects opportunities for distributed computation
- Opportunity to check for coupling bandwidth
- Opportunity to check for errors and intentions of practitioners
 - E.g., A function node expects an input but does not have one with an expected identifier
- In realistic applications
 expects disciplinary experts
 to communicate at this
 stage
- Can help compile data dictionaries or thesauri
- Can use data dictionaries to decrease interaction at this stage

REMS process, step 4: objective and constraint identification

- Identify objective and constraint information
- Leaf nodes are all potential objectives and constraints
- Examine problem formulation
- Assemble conceptual sensitivity information for optimization formulation

minimize
$$\mathcal{F} = \xi L A$$

$$A$$
subject to $S = F/A \le S^*$

$$W = \rho L A \le W^*$$

Summary of the process

- Start with disciplinary data description
- Translate description into intermediate representations
- Link intermediate representations and generate incidence matrix
- Continue with the iteration
 - Analysis of intermediate representation
 - Manipulation of representations
 - Updates
- N.B. So far, avoided difficulties with algebraic notation

Summary of the process, cont.

Tasks

- Error checking
- Derivative composition
- Propagation of local problem changes throughout formulation
- In highly structured contexts, manipulation of sensitivity information to be passed among various formulations

REMS in relation to other methods

Many connections with other efforts

- Computational components pervasive in scientific computation; e.g.,
 AMPL (Fourer et al.), TAO (Benson et al.)
- Using graph abstractions to examine decompositions (Wagner)
- Using abstract language (χ) to coordinate design process (Etman *et al.*)
- Computational frameworks (e.g., ModelCenter, DAKOTA) must rely on abstractions of computational components

The goals of REMS are complementary

- To our knowledge, most efforts start with a conceptual NLP formulation and make decisions about decomposition and coordination
- Our goal is to start reasoning about the problem before it is conceptually formulated or integrated into a framework
- View REMS as a potential pre-processor in frameworks

Concluding remarks

- Logical framework for MDO problem specification and reasoning
- Applicable to other problems of similar structure in the context of NLP (e.g., synthesis of large single-discipline problems following domain decomposition)
- General ideas are likely applicable to reasoning about complex systems in broader contexts (e.g., systems of systems)
- A grammar defined
- Language and automatic analysis and manipulation of representations under development